x

    ПІБ платника:
    x

    Description:

    The course is intended for those who want to start Data Science journey, but math knowledge does not allow you to feel confident enough; for those who want to refresh basic mathematics before delving into the data science; for those who do not want to make a reference to a math textbook every time when studying new algorithms.

    Key skills:

    In the course we will give a base that will allow you to easily learn new specialized sections of mathematics for Data Science. Recall the basic functions, their properties, operations with them; we will go through the basics of differentiation and integration and their application; we will get acquainted with sets and matrices, combinatorics and an introduction to probability theory.

    Outline:

    Schedule

    Themes

    Monday

    Equations and Inequalities; Quadratic Equations and Inequalities; Absolute Value

    Tuesday

    Exponentiation; Basic Rules for Exponentiation; Arithmetic, Geometric and Harmonic Progressions

    Wednesday

    Sets Definition; Basic Operations; Common Number Sets; Binary Relations

    Thursday

    Introduction to Function; Domain of Definition; Range of the Function (Codomain); Even and Odd Functions; Periodic Function

    Friday

    Power Function; Inverse Function

    Monday

    Logarithm; Exponential Function; Logarithmic Function

    Tuesday

    Trigonometry Basics; Trigonometric Functions

    Wednesday

    Vector; Line; Plane; Angle Between Geometry Objects

    Thursday

    Introduction to Derivatives; Equation of a Tangent Line

    Friday

    Functions Monotony; Extrema of a Function; Concavity and Convexity of a Function

    Monday

    Antiderivative: Rules, Formula & Examples.

    Tuesday

    The Indefinite Integral and Basic Rules of Integration. Area Under a Curve

    Wednesday

    Matrix of a Numbers, Basic Operations, Determinant

    Thursday

    Basics of Combinatorics

    Friday

    Basic Concepts of Probability; Sum Rule; Product Rule; Unconditional Probability; Conditional Probability

    Инструктор:

    Ирина Лазаренко

    Одна из ведущих инструкторов DEVrepublik boot camp, а также Старший преподаватель кафедры математического моделирования экономических систем Национального технического университета Украины «Киевский политехнический институт имени Игоря Сикорского».
    Ирина также научный сотрудник лаборатории компьютерного моделирования и интеллектуального анализа данных в Мировом центре данных по геоинформатике и устойчивому развитию. К ее научным интересам относятся Анализ данных, исследование операций, оптимальное управление, устойчивое развитие, теория интегральных и дифференциальных уравнений.
    Она также любит путешествовать